<

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

T DOCUMENTATION PAGE \ "

BT
1b. RESTRICTIVE MARKINGS

B

«'iih ~

AD-A209 625

e N/ DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVARLABILITY OF REPORT

2b. -

Approved for public release; distribution is unlimited.
5. MONITORING ORGANIZATION REPORT NUMBER(S)

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION |6b OF;ICE'SY}HOL 7a. NAME OF MONITORING ORGANIZATION

Naval Ocean Systems Center NOSC
6c. ADDRESS (Cly, State and 2P Code)

7b. ADDRESS (Ciy, Staie and 2P Code)

San Diego, California 92152-5000
8a. NAME OF FUNDING/SPONSORING ORGANIZATION

8b. OFFICE SYMBOY 9. PROCUREMENT INSTRUMENT IDENTIFI
(¥ applicatie)

Office of Chief of Naval Research
8c. ADDRESS (C#. State and 2P Cade)

10. SOURCE OF FUNDING NUMBERS

PROGRAM ELEMENT NO.[ proJECT NO. [ TASK NO. AGENCY
ACCESSION NO.
Independent Research Programs (IR)
OCNR - 10P
Arlington, VA 22217-5000 0601152N ZT52 ROONO DN306 225

11. TITLE (inciude Securly Classification)

CONDITIONAL OBJECTS AND THE MODELING OF UNCERTAINTIES
12. PERSONAL AUTHOR(S)

I. R. Goodman
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
professional paper FROM TO June 1989
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Contium o neverse £ necessary and idently by block number)
FIELD GROUP SUB-GROUP combination of evidence
data fusion
uncertainty measures
game theory

19. ABSTRACT (Continue on reverse 7 necessary and identify by biock mumber)

This paper proposes a qualitative approach to conditioning which can be used in the modeling of uncertainties, as for example, in the
combination of evidence problems that arise in probabilistic or Al contexts. The resulting measure-free conditional objects are shown to be
both compatible with, and to establish, new insights in the structure of ordinary conditional probabilities. In addit.on, explicit relations are
developed between conditional objects and the often mistakenly equated standard logical implication operators. Extensions to other condi-
tional entities, including fuzzy sets, are also outlined, as a special case of the main thesis of the paper: that conditioning in any context can
be identified as simply the inverse of the transform representing conjunction.

)

£
J

80 6 27 034

Published in Fuzzy Computing, Elsevier Science Publishers B.V. (North-Holland), 1988.

DD FORM 1473, 84 JAN

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFED/UNUMITED [ ] SAME AsRPT  [] DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (inciude Ase Code) 22c. OFFICE SYMBOL
I. R. Goodman (619) 553-2015 Code 421
83 APR EDITION MAY BE USED UNTIL EXHAUSTED UNCLASSIFIED

ALL OTHER EDITIONS ARE OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

(When Date Entered)

DD FORM 1473, 84 JAN

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Wnen Dete Enered)




c&/

Fuzzy Computing
MM. Gupta and T. Yamakawa (Editors)

© Elsevier Science Publishers B.V. (North-Holland), 1988 119

oric

erY
INSPECTO®

(]

CONDITICNAL OBJECTS AND THE MODELING OF UNCERTAINTIES

Icwin R. GOODMAN NTIS GRAzI

L!acession Fbi

IS

DTIC TAR
Command and Control Department, Code 421 Unannonnced
Naval Ocean Systems Center Justific.t1ic:
San Diego, California 92152 ttlen
By.

and

Hung T. NGUYEN

Department of Mathematical Sciences Dist
New Mexico State University
Las Cruces, New Mexico 88003

Distributtion/

[ U —

Avalileblirty Codes
jAvail and/or
Special

PUESE—

e pll2|

This paper proposes a qualitative approach to conditioning
which can be used in the modeling of uncertainties, as for example,
in the combination of evidence prcblems that arise in probabilistic
or AI contexts. The resulting measure-free conditional objects are
shown to be both compatible with, and to establish, new insights in
the structure of ordinary conditional probabilities. In addition,
explicit relations are developed between conditional objects and the
often mistakenly equated standard logical implication operators.
Extensions to other conditional entities, including fuzzy sets, are
also outlined, as a special case of the main thesis of the paper:
that cénditioning .n any context can be identified as simply the
inverse of the transform representing conjunction.

Keywords: Conditional object, conditional probability, conditional
fuzzy set, logical implication, inverse transform, uncertainty
modeling.

1. INTRODUCTION

A basic problem in designing intelligent systems for AI is the production
of feasible inference engines. This kind of inference involves essentially
some type of logic. At the simplest level, for deterministic and classical
two-valued logical systems, ordinary modus ponens is the universal inference
engine. When probabilistic information is present, usually some form of
bayesian updating technique is used as the engine, based on conditional
probabilities and their associated calculus or logic. On the other hand, if
information is in linguistic form or vague or only partially specified, then
the technique of fuzzy logic is used as the inference engine. Even more
generally, situations can arise where both types of uncertainty may be
present, such as in a military scenario where evidence of an unknown target
appears in the form of both descriptive narratives from experts in the field
and statistical data obtained from sensor systems. (See Goodman and Nguyen

(1] for a comprehensive treatment of this situation, where fuzzy and
probabilistic modeling are unified and related.)
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Regardless of the situation, information or evidence is, in general, in
the form of at least implicitly stated conditional propositions or well-formed
formulas. All of the above-mentioned approaches use some kind of
semantic/numerical evaluation of these conditional propositions, whether they
are in the form of incoming raw data or a priori knowledge, in conjunction
with an asscciated icgic, to define the appropriate inference engine.

A ccmmen methed for directly modeling conditional statements is the use
of the logical implication operator. (For a typical example of such
identificaticns see, e.g3., Wartanabe, (2], Chapt. 7.3, pp. 333-347.
Generally, such impiicaticn is interpreted linguistically as "if b then a,”
symbolically, b = a, which in classical logic is simply "nct b or a," i.e.,
b" v a while in multivalued logics b’ V a or other formulations may be used

to interpret implicatien {3]. In particular, when probability logic is used
-- probability legic being, as is well known, a non-truth functional —
alephl—valued legic fagain, see [3]) — implicati~n is ccmmonly int2rprzicd as
"a given b," as distinc: from "if b then a," which also can be evaluated
-- usually as in classical legic as "not b or a." Cn the other hand, in
common probability usage, the two concepts are often assumed to be the same
and so used. Hcwever, it is surprisirg how few non-logicians, including
probabilists, are aware that this common identification — called in legic
"Stalnaker’s Thesis" ({4], [S]) — leads to “triviality" results: It has been
shown by ?. Calabrese {6}, [7] that no boolean binary function, including the
usual classical logical interpretation, for implication can be identified in
general with the formal entity (a|b) within the standard conditional

probability evaluation p(alb), with a similar, independent proof by D.
Lewis (8] ccncentrating on only the identification of the classical lezgical
implication operator with probabilistic conditioning. Later refinements were
established by W. Rehder (9], with modifications and interpretations made by
B.C. Van fraasen [10], E.W. Adams ({11], Chapt. 1, and D. Nute [12], where a
survey of various proposed "conditional" logics 1is given. Additional
discussions of the problem are presented by A. Appiah [(13], Chapters 9-11 and
I.R. Goodman and H.T. Nguyen [14].

As a simple illustration of the above, consider the following easily
proven inequality (initially pointed out by Calabrese (7], with a simplified
proof here):

Let a, b€ 7, a boolean ring with p : 2 = [0,1] a probability measure,
where p(-|--) 1is the usual conditional probability operation and where the
classical logical implication operation = is defined by

{b % a) 2 b Va. (1.1)

Then

p(b = a) =1 - p(bra’) = plalb) + pta’'|b) - pta'|b) + ptb}
= ptalb) + p(b’) - pla |b)
> plalb) , (1.2

with strict ineguality holding in general!

In order to clarify the above situation, it is necessary to provide a
clear and consistent concept of what (a|b) really means and how it relates
to b3 a. It is also obvious (backed by an extensive literature search) that
currently there are relatively few interpretations of (alb) without
reference to probability. Among the exceptions should be noted Demotor [15]
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and Calabrese {7]. Domotor’s initial idea that (a|b) should be interpreted
as a coset within the quotient boolean ring /b’ was used in a modified form
by Calabrese. Domotor used such qualitative or measure-free conditional
objects to aid in developing a general qualitative theory of probability
compatible with preference ordering and subjective probability.  However,
little attention was paid to the development of explicit operations and
relations between conditional entities having different antecedents. (See
especially his comments on page 22 of (15].) Calabrese {7] filled this vacuum
by producing an extensive calculus of relations and operations involving such
forms.

This paper owes its genesis to the efforts of Calabrese and to a certain
degree is based on an extension and modification of his earlier ideas.

The use of conditional object relations can be simply illustrated by the
following. If we let

d

b = " temperature ¢ 250 today"
a d "snow will fall today,"

d " 1
c = "200 ¢ temperature ¢ 350 today"
d d "snow or sleet will fall today,"

with all associated required probabilities kncwn, then it may be desirable to
compute p( (alb) + (c|d)’) or perhaps p( {alb) V {c]d) ), etc. All of
those computations require an interpretation of what (alb) and (c|d)
actually mean and how to combine them first within the probability operator
domain. Thus, if such "conditional objects" could be successfully defined and
a calculus of operations developed, then a wide range of problems involving
combination of evidence could be addressed within a formal language format,
prior to semantic evaluations. Such measure-free conditional objects should
be compatible with conditional probabilities and conditional fuzzy sets, i.e.,
when measures are assigned or more generally when semantic evaluations are
taken.

In the next section (2), an outline of a theory of conditicnal objects is
presented. As defined, a conditional object is not an element of the original
base space or logic, but rather represents a subset of the logic, i.e., lies
in the power class of the logic and hence is at a higher level then any
unconditional or ordinary object or element of the space. The mathematical
approach taken here to defining conditional objects is algebraic in nature,
arising from the identification of conditioning with the inverse of the
function representing conjunction. In Sections 2 and 3 it is shown that
conditional objects for a boolean ring include the original elements of the
boolean ring as special cases, and are the same as principal ideal cosets of
the ring, each having as a maximal element, a logical implication. Also, in
Section 3, a number of relations involving conditional objects is presented.
In Section 4, further concepts are introduced, including iterated, or higher
level, conditioning and a technique for best approximating (measure-free)
arbitrary entities by conditional objects, with applications to functional
extensions, and in particular, arithmetic operations, as well as to higher
order conditional objects. In Section 5, conditional probability measures are
briefly investigated.
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2. CONDITIONING IDENTIFIED AS AN INVERSE CONJUNCTION OPERATION.

If it 1is reasonable to identify conditioning as simply a special
functional inverse operation, the very extensive area of equation theory and
operator inversion techniques over rings and more general structures are
potentially available for use in investigating and developing properties of
conditional forms.

Our thesis is based on the premise that conditioning in its broadest
sense is identifiable with the category theory concept of the substitution of
an arrow into a relation, which is defined as the action of the contravariant
subobject functor Sub : SET - PRECRD on an arrow (or function), evaluated at
some relation ((l], Chapt. 2). For the problems we are interested in, this
reduces to ordinary functional inverses. Specifically, to define "a given
b," symbolically, from now on, (alb), where a and b are sentences, or
ordinary sets, or fuzzy sets, or any other entities in scme fixed universe of

discourse 0, consider first the mapring fb : 2 -0, definea oy

£ (x) d b, (2.1)

where * : 0 xQ -0 is a conjunction ("and") operation such as ordinary
intersection, when Q1 1is a collection of sets and fuzzy intersection defined
through t-norms, e.g., when Q is a collection of fuzzy sets. In turn, there
105, vhere #() denotes the
power class of @ and, where as usual, the inverse image

is the associated inverse mapping f

f;l(a) d {x|]x € 0 and £(x) = a} . (2.2)
Thus, finally, if we define
alb) & gha) | (2.3)

"a given b" can be interpreted as representing any element x of 0 which
when conjoined with b yields back a*b, which it should be noted, is always

in the range of fb. It follows immediately, extending fb to
fb : P(QR) - P(O) in the usual component-wise class sense i.e., for any
ACT,

b*a = f, (A) d sz(x)lx €ajcn, (2.4)
that :

fb(fgl(a*b)) = b*(alb) = a*b . (2.5)

Thus, if aCb with a, b sets in 0, a boolean ring of sets, and *

represents ordinary set intersecticn N, and p:0-1{(0,1] is some
probability measure, then the usual definition of conditional probability is
determined through a homomorphism of the relation in the right side of (2.5),
where, formally,
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pi{N) 9 + (product) , (2.6)

resulting in

p(b} - ptalb) = p(a) . (2.7)

Note that for the above special case for ordinary sets, fb is a linear

function relative to set unions ) or set symmetric differences A. However,
in general, linearity need not hold, such as when 1 represents the class of
all fuzzy subsets of some set and where * is evaluated through some general
intersecticn (conjunction) operation, typically being a t-norm or copula, and
where union (disjunction) is described by scme t-conorm or co-copula. 1In this
case, 1 can retain certain ring prcperties in general, such as closure,
commutativity, often, asscciativity, and even perhaps idempotence, for the
cenjunction and disjunction operations, the latter holding only when min and
max are chosen to represent conjunction and disjunction respectively.

Unfortunately, because of space limitations, we will not pursue any
further the concept of conditional fuzzy sets as derived from the viewpoint in
(2.3). Future papers will cover this important omission.

Going in a direction more structured than fuzzy sets, a number of results
have been extended especially most of Section 3, where a calculus of
conditional objects is displayed: with both 2  assumed boolean and, more
generally, with 0 being any commutative Von Neumann regular ring with unity;
and to even mcre general structurez (see {14]). Again, space preludes further
discussion.

From now on, suppose {1 represents a boolean ring of ordinary subsets of
a given base space, with the usual boolean set operations N (intersection), A
(symmetric set difference), U (union), C (complement), and partial order
relation C (subset), or equivalently (iscmorphically, order preserving), via

Stone’s Representation Theorem, suppose @ is an (algebraic) boolean ring o
propositions or sentences, etc., with corresponding operations - or A
(conjunction or ring multiplication), + (ring addition), V (disjunction}), ( }°
(negation or complement) and the partial order ¢ over fl. For convenience,
we will usually use the latter interpretation, with the former reserved for
certain applications such as for the extension of ovdinary arithmetic
operations over the real numbers to real conditional sets.

The above basic assumption, implies, using (2.5), that conditional
objects satisfy the characterizing implicit relation

b-{alb) = a*b = a-(bla) (2.8)
and that explicitly,
{a|b) = (a-b|b) = {x]x € ? and x-b = ab}
=a + Qb = a-bv-b" , (2.9)
where
Qb = {xblx€q} ={yly€e and y ¢ b} (2.10)

is the principal (product) ideal in 0 generated by b'.

It fcllows, for any a, b, c, d € Q,
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{a]b) = (c|d) iff (ab|b) = {cd|d)
iffab=cd and b=d, (2.11)

and the relation in (2.10) is consistent relative to all substitutions.

Note also that when b =1 (the multiplicative identity element for 0
or equivalently the entire base space X, when Q C #(X) is interpreted as a

collection of sets),

(all) =aceq, {2.12)
while for b=20 {the additive identity element or null set @, when
2 C 2(X))

(alo) =0 . (2.13)

From now on, denote  as the class of all conditional objects (ajo;
(C 2, noting that (2,12) shows 0 extends 0, i.e.,

acacm, (2.14)
with, in general, strict subclass inclusion holds throughout (2.14). Indeed,
since obviously

Q= U (D) , (2.15)

ben

where U represents the class union operator and for each b€ 2, O/b is the
quotient boolean ring

Qb = {a + 2-b = (alb'):a € Q} , (2.16)
it follows that
card(Q) = Y card(a/b) = ) card(-b) . (2.17)
ben ben

Thus, if Q = ?(X) for some finite X, with card(X) = m,

o

g m t m b
card(@) = ) (1) - 25 = 3" < 2 = cardr)) . (2.18)

t=0

As mentioned, Calabrese earlier introduced measure-free conditional
objects and proposed definitions for operators upon these cbjects which extend
the ordinary boolean ones upon 1.

First, consider Calabrese’ definition of a conditional ocbject, denoted
with a subscript o to distinguish from that presented here. It can be
shown, that despite the rather different approach, Calabrese’ definition is
indeed equivalent to ours. More specifically, note first that any LCQ,

boolean, is a dual ideal iff, for any p, q€ L, s €, pq, PVs € L. It
follows immediately that for any (ordinary) ideal I Cf, I' = {p':p € I} is

a dual ideal, and conversely, any dual ideal L = I', for I d L', an ideal of
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7. In particular, any principal dual ideal vb, for any b€ 2, can be
expressed as

Vb = {sVb:s€Q} = {x:x € 0, x > b} = (2-b')" , (2.19)

and conversely, one can express (ordinary) principal ideals as complements of
corresponding principal dual ideals. Then it follows that, in effect,
Calabrese’ definition is, for any dual ideal L of Q and any a € Q,

(aIL)o Q {x:x € 2 and there exists r € L such that x-r = a-r} . (2.20)
(See [7]), definition 3.3.2.)
Next, let, for a and L as above,
d .
(a]L)l = (y:y = xr' Var, x€N, r €L} . (2.21)
It follows readily that
(al), = (a]L)l . (2.22)

In turn, for any such y as in (2.21), note the identity
y = x°r 4+ a‘t=xr +a(r +1)=(x+ajr +a. (2.23)

Thus, for any a € 0 and dual ideal L C @, (2.22) and (2.23) imply

(alL) = (y:y = (x + a)exr’ +a, x€0, r €L}

(Q + a)*L" + a
QL' + a
L' +a, (2.24)

noting from previous remarks that L° is an ordinary ideal.

In particular, letting L = Vb in (2.24), it follows that for any a,
be€q,

(a|b), ¢ (alovb) | = (VD) + a = 2-b" +a = {alp) , (2.25)
ucing the basic relation in (2.9).

In a related direction, the following inclusion relation is easily
verified for any ideal ICQ and any a € Q:

I+adI'sa, IVa. (2.26)

Thus, by specializing I in (2.26) to principal ideal f-b', it follows that
the characterizing relation (2.8) for conditional objects will also be
satisfied by the conjunction dual “"cosets" (01-b')’'+a = (QVb)-a and
disjunction “cosets" fI*b' V a. Thus, it might be tempting to use any of
these classes of entities as possible alternative definitions for conditional
objects. But these "cosets" are not true cosets of Q, since for either type,
the corresponding equivalence class property relative to all a € 1 (b fixed)
fails, due to a lack of symmetry, or equivalently, neither type of collection
of "cosets” actually forms a disjoint partitioning of Q.
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Next, let us consider operators upon conditional objects which could
possibly ~extend the notion of familiar operations upon ordinary
(unconditional) objects in @, such as the usual boolean operations. Thus, if

n .
we let f : 0 -0 be any n-ary operation, where 0" =1 x -+- x O is the
usual cartesian n-product, n > 1, we can also let f : »()" = () be the

usual component-wisz class extension of f !as, e.g., in [2.4)). Thus, using
~Nn
(2.14), we’'can restrict the domain of the extensicn to f : 2 = MQ) ard
. . ~n
inquire whether f is a legitimate operator over Q , i.e., if £ ylelds
- -n .

closure, i.e., if rng(£)C Q2 so that we can write £ :07 -2 as an
extension of £ : 0" = Q.
The answer to this question is in the affirmative for all boolean

operations acting upon conditional objects as defined here, with the results
summarized in Theorem 3.1 of the next section. On the other hand, this is nct

necessarily the case for other operaticns, such as arithmetic cres. (See
Section 4.) On the other hand, one can simply define, in scme ad hoc manner,
“.n . -0 .

an extensicn of an operator f : " -0 to fl : 1 -0, or to fl SR S

which need not coincide with the component-wise class extensicn used
throughout this paper. But care must be exercised that fl is well-defined.

(It is easily verified that all compcnert-wise class extensions relative to
~n
Q are well-defined relative to all substitutions and equality for

conditional objects from (2.]

In {7], Cglabrese proposed extensions for the common boolean operators
*»V,and ( )° from 0 to Q.

Specifically, the extensions are defined, using again a subscript o to
distinguish Calabrese’ approach from the cne here: for any a, b, ¢, d € 0,
o4 .
(alb)'o = (a' [b) , (2.27)
whence by (3.1), Calabrese’ definition for the extension of complement to

conditional objects coincides with that derived here. On the other hand,

(alby v_ (c]d) € (abV c:dlb v d) (2.28)

when compared with the correspoending extension for disjunction to conditicnal
objects established here in (3.3), shows that the two extensicns in general
differ considerably in their antecedents. Similarly, Calabrese’ propcsal for
the extension of conjunction of conditional objects, as a DeMorgan dual of
disjunction,

(alb) «_ (cla) € ((avb )+ (evd')[b v d) (2.29)

is quite distinct in form from the conjunction extension here, shown in (3.4).

In any case, it can be readily shown that all of the above precposed
operator extensions are well-defined. With all due credit extended to the
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pioneering work in (7], the thrust of the approach taken in this paper to
conditional objects, rather than appealing to intuition or analogues with
other concepts (such as with logical implication), is to derive from first
principles as many results as possible. One justification for considering the

basic component-wise {or power class) extension of operators over " to Qn,
is that these extensions can be shown to be well-defined and to extend in a
natural sense corresponding coset operations for fixed common antecedents of
conditicnal objects. In turn, these properties, together with a partial order

extension to 0, can be shown to lead a number of interesting and useful
properties, as will be demonstrated in the following three sections.

3. DEVELOPMENT OF A CALCULUS CF OPZRATICNS FOR CONDITIONAL OBJECTS.

In order for ccnditicnal objects to be appiicable, we need tc develop a
calculus of operaticns for these entities. The results are summarized in the
ensuing theorems, corollaries and remarks. By limitation of space, most
proofs have been omitted. (See [14] for all relevant proofs and additional
properties.} Relative to the discussicn near the conclusion of the last
section, as stated there, by utilizing the basic component-wise class

-n
extensions of operators over Qn, one can obtain legitimate extensicns to 0
for at least the class of all bcolean operators and happily these extensions
have sirgle computable properties. Thus:

Theorem 3.1.

The boolean operators ( ), +, -, V are all well-defined and closed

relative to 0. In addition, the relations are given for all a, b, ¢, d€Q,
{alb)’ = (a'|b) = (a'b|b), (3.1)
(alb) + {c|d) = (a + c]bd) = (ab + cd|bd), (3.2)

(alb) v (c|d} = (aV clab Vv ecd V bd)

= (abV cdlab V cd V bd) , (3.3)
(alb) - (c!d) = (acla’bVv c'dV bd)
= (abcdja'b v c'd Vv bd) . (3.4)
~n
()" 1is involutive and since +, ( ), V over Q are easily shown to

be associative and commutative, they are extendable to any finite number of
arguments (ai|bi)’ i =1, *+- n, whence

(allbl) Foeee 4 (an]bn) = (a) + o4 anlbl e b)), (3.5)
(allbl) Veoov (anlbn) = (ay VooV anlalbl VeseVab Vbbb ), (3.6)

(allbl) .. (anlbn) =fa; - an|a'lb1 VessVoarb Vb oeesb) . (3.7)

1
a

Remark.

As menticned before, the relations in rheorem 3.1 can be extended. For
example, if I, JC Q are any (product) ideals of 0 and if a, § € Q, then
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(T +a) +(J+B)=(I +J)+ (a +p) (3.8)
(I +a) - (J+B) =1IJ+Ja+If +af, (3.9)
(I+a)V(I+3)=1-FJ+ Ja + I3 + (aVp), (3.10)

all cosets of (. Again, as mentioned earlier, the above results extend to
more general rings such as Von Neumann regular ones. A basic algebraic
question that arises here involving (3.9) is how general can a ring 0 be in
order for the left hand side of (3.9) to yield a coset of 0? The answer
appears to be tied up with a natural generalization of Von Neumann regularity
and is discussed at length in [14].

Next, Corollary 3.1 is a rigorization of a common tacit assumpticn
concerning conditioning, when antecendents are all the same.

Corollary 3.1.

For all a, b, c€ Q,

(alb) + (clb) = (a + c|b) = (ab + cb|b) , (3.11)
{ajb) v (c}b) = {aV c]b) = (ab V cb|b) , (3.12)
(alb) - (c|b) = (ac|b) = (acb|b) , (3.13)
(alb)' = (a'|b) = (a'b|b) , {3.14)
with (0{b) and (I[b} = (b{b) playing the roles of, relative to b fixed,
additive and multiplicative identities, respectively. o
Remarks.

1. Corollary 3.1 illustrates the reduction of Theorem 3.1, when all
antecedents are identical, to the classical natural homomorphism

natb 0%, (3.15)

where for any fixed b€ N and all x € 1,

d
nat, (x) = (x]b) = x + Qb . (3.16)

Equivalently, all of the above extended boolean operations ccincide over any
/b’ with the usual corresponding coset operations.

2. By using the canonical form for binary boolean operators, the closure
of complement, conjunction and disjunction certainly implies the closure of
all binary and similarly n-ary boolean cperators over Q.

One can extend the partial order < over to 0 through the
definition and equivalent property

{alb) ¢ (cld) iff (alb) = (a]b) - (c|d)
iff (cld) = (¢|d) v (a|b) . (3.17)

This ordering has many properties similar to the partial ordering ¢ over 0
(a boolean ring).
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Thecrem 3.2

The relation ¢ over Q forms a partial order with the fo. wing
characterization and meet and join lattice properties for all a, b, c, 4, e,
£, g, he Q:

{alb) < (¢|d) iff ab ¢ cd and c'd¢ ab, (3.18)
{alb) ¢ (cld), (elf) iff (alb) < (cld) - (elf) , (3.19)
(alb) > (cld), (e|f) iff (alb) 2 (c|d) Vv relf) . (3.20)

If (alb) ¢ (c|d) then (cld)' < (alb)". (3.21)

If (a|b) < (c|d) and (elf) ¢ (glh) , then

(alb) + (elf) ¢ (cld) - (qin) , (3.22)
(alb) v (elf) ¢ (c|d) Vv (g|h) . (3.23)
a

The algebraic properties of © are summarized in the following (Q
assumed boolean).

Theorem 3.3.

N relative to +, ¢ 1is in general not a ring due to failure of additive
inverses, though it is commutative and associative for both operations and
idempotent for -+ . 1In addition, relative to V, - it is a semi-ring in the
algebraic sense (i.e., a semi-group relative to V, - and (mutually)
distributive} which is commtative with additive identity 0€eq and

multiplicative identity (unity) 1€ Q. 1In addition, 2 is DeMorgan for

(V,*,( )") both ways, is mutually absorbing for v and -+ and ()’ is

involutive. a
Some additional miscellaneous properties:

Theorem 3.4.

For all a, b, ¢, d€ Q:

(alb) - (alb’) = (a%fa’) = (ala') = (0fa") , (3.24)
(alb) v (a|b) = (ala) = (1]la) , (3.25)

{alb) v (alb)' = (b|b) = (1|b) , (3.26)

(alb) = a + (0[b) , (3.27)

cV (a]b) = (aV c/bV c), c-(alb) = (calbV ¢}, (3.28)
¢ + (a|b) = (c + alb) , (3.29)

(alb) + (cid) = (alb)(c]d)" V (a|b) (cl|d) , (3.30)
(albc) « (b|c) = (ablc) (chaining property). (3.31)

For all Q. tty ame 2

If a re, ay are disjoint and exhaustive, i.e.,
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aiaj = 6ij and ay +oere a, = 1, (3.32)

then for any j, the Bayes’ theorem forms hold:

|b) = (a.b|b) = ((bla.)-a.|b) , .
(a)l ) (.aJ {by = (( IaJ) a)l ) (3.33)
.|b)*b = .)ea. (= a. R .
(aJI )*b (bIaJ) a { an) (3.34)
b = (blal)-al S (b|am¥-am . (3.35)

If a; < a, ¢ ovee ¢ a then the chaining relation holds:
<al|a2)~<azla3) (amllam) = (allam) . (3.36)
o]

Some comparisons between classical logical implication as given in {1.1)
and conditioning, with, as usual 0 assumed boolean:

Theorem 3.5.

-For all a, beqQ,

(alb) = (b= alb) , (3.37)
ab, b= ac€ (alb) , (3.38)
ab ¢ (alb) ¢ (b=>a), (3.39)

and in the sense for all y € (alb)

ab<¢y< (b=aa), (3.40)

b®a=(alb) vb =(a »b)=(bla)Vva, (3.41)
(alb) = ( b= a) - (bjb) = ((b']a"}) V a) + {(b]|b) (3.42)
(b'fa’) =(b=a) (a'la) = ((alb) vb) + (ala") (3.43)

(aesb) S (asb)-(bsa)=abVv ab = (alb)-(bla) v a'b’ (3.44)
{a|b)-(bla) = {(abla V b) = (a & b)-(ablab) , (3.45)
implying, analogous to (3.39),

ab ¢ (alb)<(bla) ¢ (a & b). (3.46)

o]

Remarks.

One can compare the properties of = and (-|--) side by side and see
that certain analogous properties do hold. For example,

(alb) = (ablb) while (b= a) = (b= ab) , (3.47)
(11b) = (b|b) =2V b while (b21) =(b3b) =1, (3.48)

{b|l) ~ b while (13b)=b, (3.49)
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(b[0) =0 while (0=>b) =1, (3.50)

(alb)’ = (a'blb) while (b=»a)’ =ab, (3.51)

(0|b) = (b"|b) = 2+b° while (b3 0) =(b=®b ) =b , (3.52)
(a]b)-{c|d) = (ac|q) while (b= a)-(d=>c) = (q=ac), (3.53)

{alb) V (c|d) = (aV c|r) while (b= a)Vv (d=c)=(bd=>aVc), (3.54)

where
q%abvedvid, r%abvedvnd. (3.55)
For a < b < c,
(alb)-(blc) = (a]c) while (c=Db)-(b=a) ¢ (c=a). (3.56)
For a ¢ be,
(alb) ¢ (albc) while (b= a) ¢ (b-c=>a) . (3.57)

Finally, this section is concluded with two useful results: the first
concerning the intersection of conditicnal objects generalizing the classical
disjoint-identical relation of cosets in a fixed quotient ring, and the second
concerning subclass inclusion of conditional objects.

Theorem 3.6.

For any a, b, ¢, d€ Q, denoting N ordinary ccmponent-wise class
intersection and C as the ordinary component-wise subclass relation:

& iff a+c¢ (0|bd)
(i) (alb) N (c|d) ={ {3.58)
(v(a,c)|bvd) iff a + c € (0[bd) ,

where
v(a,c) d pra=q+c;a+tc=q+p, (3.59)
for some p € (0|b), g€ (0]|d).

(ii) (alb) € (cld) iff b>d and ac€ (cld) . (3.60)
ja]

4. ADDITIONAL PROPERTIES OF CONDITIONAL OBJECTS

bDefine higher order or iterated conditional objects, analogous to that in
(2.3) where a € 0 is replaced by (alb) €N and b€ 0 is replaced by
(c|d) € 9. Thus, for any a, b, ¢, d €0,

-1

((alb)f(cld)) = ((alb)+(c|d)|(c|d)) = f(c:d)

(talb)-(cld))

= [(xly):(x]ly) € 2 and (x]y)-(c|d) = (a]b)-(cid)} , (4.1)

the explicit solution of which is given in:
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Theorem 4.1.

For all a, b, ¢, d€ 2 (boolean)

((afb)|(cld)) = (alb)-(c]d) Vv Tab,c.d ’ (4.2)
f g((13-t|(c'c1)' Vst ¢ s€nj (4.3)
a,b,c,d = ’ .
B =plab,e,d) & (cd) (a'bd’) = (a'b)'d Ved, (4.4)
B' =p'(a,b,c,d) =cdV abd = (c'd)-(a’bVv d). (4.5)

o]

Because of the inherent difficulties in handling higher order conditional
objects and possible operator closure problems arising, two approximation
procedures have been developed.

The  first procedure utilizes the class reduction  operator
0 : #(P(Q)) > MN), where for all o € P{PQ)),

Oe) € Ua=(xlxenreqica. (4.6)
A€d
Denote 2 as the set of second order conditional objects. Then

Theorem 4.2.

~

U:0-0 is a surjective homomorphism relative to all boolean
operations and for all a, b, ¢, d € 0:
U((alp)|(cld)) = (ala) , (4.7)
a =ala,b,c,d) $bp =be(cdvad) . (4.8)

Thus,

U(alb) = {(alb); T((alb)|(c|b)) = Ut(alb)|e) = (albe) , 4.9

O(al(cld)) = (aled v a'd") , (4.10)
(cld) - U(talb)|(cld)) = (alb)-(cld) . (4.11)

Also, the following restrictions of U are surjective isomorphisms
relative to all boolean operations :

Ct

: {({a|b)|c):a, b€ Q} = {(a]lbc): a, be a} ,

(ot

: {({a]b)|(c|b)):a, c € Q} - {(a|bc):a, c € Q) ,

<

: {((alb)[(c[d)):a, b€ Q} -» [(al]ala,b,c,d)):a, b€ O} .
a
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Thus in a real sense U reduces all higher order conditional objects and
their operations down to Q.

The thrust of the second procedure is to determine for a given

~

4 € M(MN)), the best upper approximation by €, i.e., the smallest possible

element (alb)|(c|d) € @ such that 4 C ((a]b){(cid)), relative to component-

wise subclass inclusion. Since the analogue of this procedure for 2 is of
some importance, consider the following result utilizing Theorem 3.6:

Theorem 4.3.

If Q is not only boolean but complete, i.e., V and - are extendable
over 0 to any infinitude of multiple arguments, where one defines for any

ACQ, V(A) d V (x), etc. Then for any AC Q, denoting - as A,

X€A
5(a) ¢ ((alb)]ac (alb) € )
= {(a|b):(alb) € @, A(A} V (v(A))" 2 b, A(A) € (alb)} ,  (4.12)
Ac cond(a) $0 5(a) = (MAIAR) V (VAN ) €0 . (4.13)

]

Corollary 4.1.
tet £ : 2 x 0 -0 be increasing, i.e., for all a;, bi. €N, i=1,2

a; < a,, b1 < b2 implies f(al,bl) < f(az,bz) . (4.14)

Then extending f to f:0xQ->%®0), one need not have mg(f) C Q.
However, for all (alb), (c|d) € Q,

cond(£((a|b), {c]d))) = (f(a,c)|£f(a,c) vV (f(avb’ ,cvd ))') . (4.15)
o

Corollary 4.2.

Ltet 0 =3", the real borel o-ring of subsets of BR"  and let

f:R" xR R"  be any function. Let f:0x0-90 be the usual

component-wise class extension of f. Then £ over Q x N is always
increasing, where ¢ 1is interpreted here as C between sets in 1, and hence

(4.15) is valid.

Ia particular, arithmetic operations over R" x R"  such as ordinary
addition and multiplication in general can be shown not always to have ranges

in 0, for 0 = A" Thus, Corollary 4.2 is useful in making the modified
n
extension. Using the fact that for any A € R and any aC b€ 4,
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A - (alb) = (ralab) , (4.16)

it follows for any )\i€lP with ngxigl. i=1, «-+-, m, A +--~+,\m-

1
1, where here -, 4, 1 refer to ordinary multiplicaticn, sum and wunity,

. no.
respectively, and for any a; c bi €Rr,1=1, «++, m,

m m m
cond( }.\i-(ailbi)) = ( E,\iail E \a, U Ké,b)’ (4.17)
i=1 i=1 i=1
where
m
d
Ky p = Y A(a; U b)) - U Yraa v ) APy - (4.18)
i=1 ='m ieg 13

~

Returning to @, with 0 again a general booclean ring, in considering

~

the cond( ) operator, the analogue of (3.60) for Q is important.
Theorem 4.4.

For all a, b

., c., d. €0 with (a.lb.) ¢ (c.ld,) and a, ¢ b.,
[ S itti itti

i
< < di' without loss of generality, i = 1, 2,
((a; b)) (eqla)) € ((a,lb,y) [ (eyld,)) (4.19)
iff
a, =¢ca; . b2 = do-(cc', v bl v di) v a'lbl (4.20)
¢, =B . d2 =d Vv ci_dl , (4.21)

where c,r do € 0 are arbitrary with

<d , {4.22)
and

Bl = bid.i v (:;.di ., B = c; V' bidi ' (4.23)
i=1, 2. a

Use of Theorem 4.4 enables cond to be obtained for disjunction and

~
~

complement of objects in Q. Then, noting cond(al). =d, if o €Q, for cond
operating over T(P(Q)):

Theorem 4.5.

For a,, b., c¢. d. €q with (a.lb.) < (c.[d;), a, ¢(b., c, <¢d.,
1 1 1 1 1 1 1 1
i=1, 2:
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((allbl)l(clldl)) v ((a2|b2)|(c2|d2)) = ((a3lb3)|(c3!d3)) , (4.24)

where
d d
ag = a; v ay, b3 = a3 \’% ble B (4.25)
d e g4 d
c3~a3vnlf32, d3-c3v blb2 , (4.26)
but
((a; b)) ltc ld)) € cond(((a b)) (e ld; 1))
= ((a lbley) (4.27)
where
d,. .. d d ..
a, = ﬁlalbl R b‘1 = b1 v [31 , 4 ﬁl , (4.28)
so that ((allbl)l(clldl))' € 0, in general. o}

Finally, it can be shown that Stone’s Representaticn Theorem can be

extended to an order preserving isocmorphism between  and a corresponding
conditional set space by simply using the extension of the initial iscmorphism
¥ in Stone’s Theorem linking any abstract boolean ring @ with a boolean
ring of sets defined by vw(alb) = (#{a)|¥{b)), for all a, b € 0.

5. SOME RELATICNS BETWEEN CONDITIONAL OBJECTS AND CONDITIONAL PROBABILITIES
So far, conditional objects have been developed without regard to any

particular probability measure. But if the concept is to make sense,

compatible links must be established with conditional probabilities.

Let p : 0 - [0,1] be a probability measure with 0 a boolean ring.

Extend p to p:Q-[0,1], noting (2.12), (2.14). Although for each
beq, P, - [0,1] or equivalently Py * Ob - [0,1] is a probability

measure, where Py is the conditional probability measure

p(@ ¢ plalb) = prab)/p(b) | (5.1)

p:0-10.1] is neither additive nor subadditive for ccnditional objects
with different antecedents. However, p : @ = [0,1] car ke shown to be
monotone increasing, i.e., if (alb) < (cld) € Q, then

plalb) ¢ plcld) . {5.2)
Applying (5.2) to (3.39), e.g., leads to

plab) < pfalb) < p(b > a) , (5.3)

for all a, b€ Q, verifying, as a check, (1.2). Note also that Theorem 3.1
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shows p can be evaluated on any boolean function of conditional objects as a
simple conditional probability.

In another direction, define two conditional objects (alb), (c|d) € n
to be qualitatively or measure-free independent iff they are p-independent,
i.e.,

p({alb)-(cld)) = pta|b)-plcld) , (5.4)
for all probability measures p : 2 - [0,1]. Similarly, (3.36) shows, for
a; ¢ oo Sag, (alﬂz), eee, (am_llam) are jointly gqualitatively independent.

(See also Domotor’s somewhat different concept of qualitative independence
([15], Section 2.5).)

Theorem 5.1.

The only examples of qualitative independent pairs of conditional objects
(a{b), (c|d) € @ are when

(a<b=c¢d),or (a¢b,c;c=4d, (5.5)
or

(a=b,c=4d), or c=0. (5.6)

Another direction of interest involves sequential wupdating of
information. If a represents an event of interest and b, ¢, 4, +-- are
successively arriving gbserved data events, then identifying (alb-c) with
(alb,c), etc., and utilizing (4.9), one obtains

p(W((alb)[(c|b)) = p (a) = p_(a]b)

= pl(a]p)-(c|b))/piclb) S prialby]iclb)) . (5.7)
By replacing in (5.7) b by b-c and ¢ by d, one obtains
p(U((alb,c)}(d|b,c))) = Ppeg(@) = pd(alb,C)

= p((alb,c)-(d{b,c))/p(d]b,c) = p((alb,c)|(d|b,c}) . (5.8)

Thus one can substitute the conditional forms in (5.7) into (5.8)
iteratively, with in effect higher order conditional objects generating the
desired updating.

Finally, we consider briefly the randomization of conditional objects and
their relation to ordinary conditional random variables.

Let (M,d,p) be a probability space and V : M +B", w:m-R" random
variables with measurable ranges. Extend V and W by the component-wise

-~

class procedure up to Vidoa", w:doa and VxW to
VxW:d-a"", where for all a, b€,
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vialb) $via) x B*, w(alb) $ R® x w(b) ,

v x w(alb) ¢ v(a) x wb) .

-
wu
O

Next, define the random conditional object (VW) : o —» 3
b€ A

e by, for all a,

wiwytalby € (v « W (alb) [wialb))

= (V(a) x WD) |R™ x #(b)) § (via)[wib)) , (5.10)

whence the inverse mapping (viw) L a®* n

M L4 yields for any c € A", d € ",

(v|w)'1(c|d) = (v < W Le x d)lw‘ltdn

= whow ) . (5.11)
Hence (V|W) induces “conditional event probability space” (mm+n’ Zimn,
. pln is ai
P(Vlw))’ where p(VIW) : R [0,1]) is given by
p(vlw)mld) = p((v|W) is in (c[d))
= p(vlw " Licla))
= pvlceywtaay . (5.12)

Finally, one can define, e.g., the expectation of random conditional
objects as a limit of refined partitions of weighted sums of conditional
objects with weights in the form of (5.12) for ¢, d replaced by suitable
i di from the partitions,. Thus, using (4.17), (4.18), one can show

E((V[#W € d)) = (E <V[Ww € d>]d) , (5.13)
E((V|W)) = (E <V x W]EV x W) , (5.14)

where E<-|--> indicates ordinary conditional expectation.
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